
Honours Individual Project Dissertation

SFJ - BOOLEAN TYPES AND SEMANTIC
SUBTYPING FOR FEATHERWEIGHT JAVA

Artem Usov
April 6, 2020

i

Abstract

The type system of a programming language often dictates its safety and expressivity. There
are two distinct approaches to defining a type system: the syntactic and semantic. In the semantic
approach, one defines a model of the language and an interpretation of types as subsets of this
model. Subtyping is defined as inclusion of subsets denoting types.

In this paper we present SFJ—Semantic Featherweight Java, an extension of Featherweight Java,
which implements such a semantic type system defined by Dardha et al. (2013; 2017). We further
exploit it to integrate boolean types as well as nominal and structural subtyping. This paper
illustrates the benefits of such language constructs by allowing us to write programs that have
higher guarantees of correctness by increasing the static type-checking power of the language
whilst being more intuitive at the same time.

i

Acknowledgements

I would like to thank my supervisor Dr Ornela Dardha for her support and guidance throughout
the year as well as her enthusiasm for lecturing which is what made interested in pursuing a
project about programming languages and type systems.

I would also like to thank my parents who have always supported and believed in me.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: Artem Usov Date: 6 April 2020

ii

Contents

1 Introduction 1
1.1 End Goal of Programming 1

1.1.1 Static Code Analysis 1
1.1.2 How Static Analysis Works 1

1.2 Varying Type Systems 2
1.3 Goals of this Project 2

1.3.1 Problem Statement 2
1.3.2 Aims 2

1.4 Dissertation Outline 2

2 Background 4
2.1 Type Systems 4
2.2 Nominal vs Structural Subtyping 6
2.3 Featherweight Java 6
2.4 Tools 7
2.5 Related Work 8

3 Syntax and Subtyping Implementation 9
3.1 Syntax 9

3.1.1 Syntax of Types 9
3.1.2 Syntax of Terms 9

3.2 Implementation of subtyping algorithm 10
3.2.1 Finite Types 10
3.2.2 Defining the Subtyping Relation 10
3.2.3 Typing Values and Closing the Circularity 14

3.3 Analysis of the Subtyping Relation 14
3.3.1 Complexity and Efficiency of the Subtyping Algorithm 14
3.3.2 Flaws of Structural Subtyping 15

4 Exploiting Semantic Subtyping 16
4.1 Implementation of Boolean Types 16

4.1.1 Illustrative example of Boolean Types 16
4.1.2 Type-Checking Boolean Types 17
4.1.3 How Boolean Types are Represented in SFJ 18

4.2 Unusable Boolean Types 19
4.3 Method Types 20
4.4 Multi-methods 21
4.5 Additional Features 22

5 Code Generation 23
5.1 Implementation 23
5.2 Problems with Code Generation 24

6 Evaluation 25
6.1 Testing 25

iii

6.2 User Evaluation 25
6.2.1 Evaluation Strategy 26

6.3 Summary 26

7 Demonstration Paper 29
7.1 COORDINATION 2020 29

8 Conclusion 30
8.1 Summary 30
8.2 Future Work 30

Appendices 32

A SFJ ANTLR Grammar 32

Bibliography 35

1

1 Introduction

1.1 End Goal of Programming
The end goal in all programming projects is to create a solution to the task at hand that ex-
actly solves the initially defined problem and performs exactly as expected by the programmer.
However, this rarely actually happens.

On the one hand, this is often because the original problem is not statically defined. If, for
example, it is a solution for an external client, then their requirements and needs will change
over time. This means the project needs to be adapted over time. On the other hand, and almost
always much less evident, is that programs do not work exactly as the programmer imagines
them to work.

In general these are called bugs in a program, and have become more and more common as
projects and the underlying hardware they run on have become more complex. Therefore in
both academia and industry there have been great efforts over the years to create tools that allow
us to decrease the amount of bugs in our programs and increase our productivity.

1.1.1 Static Code Analysis

One area of great effort has been in the development of static code analysis tools. Some of these
exist integrated into the language itself such as with Spark (Carré and Garnsworthy 1990). Spark
is a formally defined language based on the Ada (Ichbiah et al. 1979) language intended for the
development of high integrity software such as flight control systems. Others exist as separate,
well-known tools that exist alongside the language such as the Clang analysis tools for C and
C++ 1.

Whilst they are not necessary to write correct programs, these tools have quickly become
industry standards for maintaining a level of correctness within codebases and avoiding typical
programming errors.

1.1.2 How Static Analysis Works

Underlying how all of the previously mentioned static code analysis tools work, is their use of
the type system of the language. Type systems at their most basic work by assigning types to
various constructs of a program so that incompatible types cannot be used.

For example, one common area of error in C code that the Clang tools warn about is implicit
conversions, where the value of an expression is a different type from the one expected, such as
the use of a floating point number where an integer is expected. The C language will implicitly
convert the value to an integer, however this happens unbeknownst to the programmer, which
can cause unexpected behaviour later on in the program. The tools, using their knowledge of
the type system that you can only use an integer where an integer is expected, can therefore flag
this as being a potential bug.

1https://clang.llvm.org/docs/ClangTools.html

2

1.2 Varying Type Systems
The effectiveness of static analysis tools and more generally the safety and expressivity of a pro-
gramming language therefore depends on the type system that is uses. Type systems have evolved
from the relatively simple systems in languages like C to more complex ones such as in Java
which have class types and subtyping relations where types can be substituted for one another.

More modern advances in type systems include the use of linear types in the Cyclone (Grossman
et al. 2002) language which allows us to more naturally and logically define finite state machines.
There also exist other new developments in type systems such as boolean types which are explored
in this paper.

1.3 Goals of this Project
In this section, the issues and aims of this paper are presented.

1.3.1 Problem Statement

The typical hierarchical subtyping definitions in Java quite often restrict and complicate the logic
that the programmer wants to implement. These problems come up particularly often when
working with legacy code which has incorrectly defined abstractions in its classes. This therefore
leads to less understandable and less maintainable code which could cause problems in the future.

1.3.2 Aims

The aim of this project is to implement a new programming language, which we further
call Semantic Featherweight Java (SFJ), which uses a new proposed type system consisting of
a semantic subtyping algorithm, which is based on set-theoretic models, and boolean type
connectives such as: and, or and not.
While there is some non-trivial mathematical machinery involved in implementing such a type
system, once it is implemented, this more powerful type system can be used by programmers
without knowledge of the implementation underneath.

This project aims to transform the mathematical definition of such a type system by Dardha et al.
(2013; 2017) into an actual software implementation, solving the issues encountered doing so.
The language should be able to illustrate improved solutions to the example problems which are
encountered in a language without these features such as Java. Furthermore, the language will
be evaluated so see whether these additional language features are intuitive to use.

1.4 Dissertation Outline
The dissertation is structured into seven chapters as follow:

• Chapter 2 provides background about type systems and Featherweight Java, the language
on top of which the new type system is implemented. We also discuss the tools which were
used in this project and existing work on semantic type systems and boolean types.

• Chapter 3 introduces the design and implementation of SFJ. This includes the syntax of
the language, and the key algorithms which were used to implement the type system.

• Chapter 4 shows how using the semantic type system, we can now easily add language
constructs that exploit the set-theoretic implementation of subtyping.

• Chapter 5 explains the process of code generation for a SFJ program so that it can be run
on a computer.

3

• Chapter 6 contains details about the evaluation method, evaluation results and analysis of
results.

• Chapter 7 briefly describes the conference paper that was submitted detailing SFJ as a new
innovative programming tool.

• Finally chapter 8 concludes the dissertation with a summary of the important results.

4

2 Background

In this chapter, we explore type systems and the different ways they can be defined. We especially
explore the semantic approach of defining a type system and explore the benefits and challenges
that it brings. We also discuss the tools that were used in this project and the related work that
has already been done relating to boolean types or semantic type systems.

2.1 Type Systems
In all modern programming languages, a type system is arguably the main way that incorrect
behaviour in a program is reduced by preventing the occurrence of type errors. A possible definition
of a type system is given by Pierce (2002) as:

A type system is a tractable syntactic method for proving the absence of certain program behaviors by
classifying phrases according to the kinds of values they compute.
A type error is defined by Wright and Felleisen (1994) as:

The use of a function on arguments for which it is not defined, and the attempted application of a
non-function.
Most importantly, we want to emphasize from the first definition that in a type system, we aim
to classify phrases in our language into a specific type. Then, using the type system, we can check
that the types of the arguments given to any operation are always correct, thus avoiding type
errors.

For example, taking the addition operation which takes two arguments of the number type, then
given the arguments 42 and 2 + 2, we know they both hold or compute a number type and so
there is guaranteed to be no type error. Conversely, given the arguments 42 and the boolean
value true, they are not both a number type and so would cause a type error. We therefore avoid
unexpected bad run-time behaviour and instead find these problems before even running the
program.

However what the first definition is missing is that it defines a type system to be solely a syntactic
method, in which the system is defined as a list of formal deduction rules. The syntactic approach is
certainly by far the most common approach for a type system, but there does exist an alternative in
the semantic approach. Frisch et al. (2002) describe the semantic approach as instead starting with
a model of the language and all the possible values in the language and defining an interpretation
of types as subsets of values the model.

For example, given a language with a model D:

D = [a + bi | a,b ∈ R] (2.1)

we can define the types int, real and complex as subsets of the values in D corresponding to their
usual mathematical definitions.

Such as model comes with several advantages. For example, given two types s and t which
represent subsets of values in the model, when s ⊆ t does not hold then it is possible to exhibit

5

Figure 2.1: Circularity in trying to define a semantic subtyping relation (Castagna and Frisch 2005)

an element of the model which is in the interpretation of type s and not t . This can then be
used to show more informative error messages to the programmer as shown by Castagna and
Frisch (2005), such as showing which value in s is causing the equality not to hold. Secondly the
set based approach to the type system leads itself to able to incorporate boolean operators into
its types easily. However due to being a more technical approach, such as the non-triviality of
defining the interpretation of types as subsets of a model discussed below, the semantic method
has received less attention than syntactic methods.

The first problem we encounter in the semantic approach is that in such a model t1 is a subtype of
t2 if all t1-values are also t2-values, i.e. the equality t1 ⊆ t2 holds. However, in this way, subtyping
is defined by relying on the notion of well-typed values; hence we need the typing relation to
able to type values; but the typing rules require a subtyping relation to be fully defined. So, there
is a circularity in our definition, as demonstrated in Figure 2.1.

To solve this problem, we follow the framework defined by Frisch et al. (2008). The general idea
of the framework is that we first extend the types in the language with Boolean Combinators: union
∨, intersection ∧ and negation ¬ to give a type algebra τ . We can then define an abstract model
B with a interpretation function [[]]B : τ → ρ(B) (where ρ(B) is the power-set of B). This model
must capture the meaning of each type but also interprets the combinators in a set-theoretic way,
such as [[s ∧ t]]B = [[s]]B ∩ [[t]]B . This model then induces the following subtyping relation:

s ≤B t ⇐⇒ [[s]]B ⊆ [[t]]B (2.2)

and we can therefore define the typing rules.

Separately, now that we have typing rules, we can define a new interpretation of types based on
values [[t]]v = {v ∈ V | `B v : t} and then define a “new”subtyping relation as above:

s ≤v t ⇐⇒ [[s]]v ⊆ [[t]]v (2.3)

While these may be different relations, if the models are chosen carefully such that:

s ≤B t ⇐⇒ s ≤ν t, (2.4)

then these subtyping relations coincide and this closes the circularity.

6

2.2 Nominal vs Structural Subtyping
Orthogonally to the discussion above of syntactic versus semantic approaches, for object-oriented
languages such as SFJ, there also exists two other opposing approaches to defining a subtyping
relation: the nominal and structural approaches.
Nominal subtyping is based on explicit declarations by the developer of the class-hierarchy and
is the approach used in Java. A is a subtype of B if and only if it declared to be so by including an
explicit declaration that A extends B. In Java, every user-defined class either extends another class
or the root Object class, creating a tree-like subtyping hierarchy.

Structural subtyping uses the structure of classes, namely its fields and methods, to define the
subtyping relation. A is a subtype of B if and only if the fields and methods of B are a subset of the
fields and methods of A, and if the field and method return types are covariant and the method
argument types are contravariant. This is similar to the requirements in Liskov’s Substitution
Principle (Liskov and Wing 1994) without the behavioural conditions.

class Apple extends Object { class Steel extends Object {
.
float setPrice (int a){ . . . } int quality

} int setPrice (float a){ . . . }
}

(2.5)

We can see in Equation 2.5 that Steel is a structural subtype of Apple, as the use of any field or
method of Apple would also be defined in Steel . All field or method return types in Steel are
the same or more restrictive than those that also occur in Apple, and all method argument types
are the same or less restrictive in Steel than in Apple. However, Apple is not a subtype of Steel
as Apple is missing the quality field. In other cases a pair of classes can both be subtypes of one
another.

Nominal subtyping is more popular than structural subtyping, which makes it perhaps unsur-
prising that nominal subtyping aligns well with the syntactic approach, and structural subtyping
aligns well with the semantic approach.

In our implementation of SFJ based on the work of Dardha et al. (2017; 2013), we implement a
semantic type system however we include both nominal and structural subtyping. This approach
gives the programmer a choice in which approach he may wish to use, but also allows both to be
used concurrently for greater flexibility and compactness in the logic a programmer may wish to
implement.

2.3 Featherweight Java
The syntax of SFJ is exactly that of Featherweight Java (FJ) (Igarashi et al. 1999), with only the
associated type system being different. FJ is closely related to Java, but with a key simplification
in the removal of the assignment operation. All fields of an object cannot be changed after
initialisation and all methods are pure functions. While this restricts FJ to what is essentially a
functional fragment of Java, it is still fully computationally complete. SFJ was intentionally based
on FJ instead of the full Java language because features such as concurrency and reflection are
orthogonal to the purpose of demonstrating of our novel type system.

Multimethods While FJ removes some feature of the Java language, the introduction of
boolean types and semantic subtyping restores some of these. Overloaded methods is one of
these. As suggested by Dardha et al. (2017), we can model overloaded methods as multimethods
(Boyland and Castagna 1997), which according to the authors is “very clean and easy to understand

7

[...] it would be the best solution for a brand new language". As an example Dardha et al. (2013; 2017)
consider the following class declarations:

class A extends Object { class B extends A {
.
int length (string s){ . . . } int length (int n){ . . . }

} }

(2.6)

Method length has type string→ int inA. However, in B it has type (string→ int)∧∧∧(int→ int),
which can be simplified as (string∨∨∨ int) → int.

2.4 Tools
The type system of FSJ was built using ANTLR (Parr 2013) to define the grammar of the
language and automatically create a parser for this grammar rather than having to create one by
hand, which made the initial development process much quicker. It accepts a grammar using
Extended Backus-Naur Form (EBNF) 1 notation to create ANTLR rules which are a list of
productions or alternatives. A general form of a rule is as follow:

rule : alternative1
| alternative2
...

| alternativen
;

(2.7)

Each alternative production in a rule can itself be a list of elements, where an element can be
another rule or a terminating token. Since we are using EBNF notation, we can also use ∗ and ?
to respectively signify repeated and conditional elements in a production. We can also use | to
give several alternatives for a single element. We show an excerpt taken from the SFJ grammar
as an example:

expression : primExpression ((PLUS |MINUS |DIV |MULT) primExpression)?
;

primExpression : NUMBER
| TRUE
;

TRUE : ′true ′

;

NUMBER : DIGIT (DIGIT)∗
;

DIGIT : ′0′..′9′
;

(2.8)

1See ISO/IEC 14977 for reference, although this is not the standard used in the examples

8

2.5 Related Work
The closest area of research would likely be the work on CDuce (Benzaken et al. 2003), which
is also a functional language with a semantic type system designed for working with XML
documents and a continuation of the work on XDuce (Hosoya and Pierce 2003). The language
extended XDuce by introducing less XML specific types such as records, boolean connectives
and arrow types. This therefore makes it similar to our language in that a class-based semantic
type system is a combination of the CDuce record types with arrow types. Muehlboeck and Tate
Muehlboeck and Tate (2018) define a syntactic framework with boolean connectives which has
been implemented in the Ceylon programming language (King 2016).

Our work and the work on CDuce follow the functional style of λ-calculus, whereas the work by
Castagna et al. (2008) extends π-calculus with semantic subtyping. Similar work to ours creating
an implementation for this would result in a Golang-like 2 language, creating a concurrency-
focused language with more intuitive types. Castagna et al. (2008) found that it was required to
be able to decide and resolve the atomicy, that is whether the only proper subtype is the empty
type, of types in order to decide the subtyping relation, and observes that this same problem
appears in λ-calculus and any other semantic-based system. This is exactly the problem we find
and solve in that we need to validate whether our type definitions are finite trees with basic types
as leaves and with not cycles.

2https://golang.org/

9

3 Syntax and Subtyping Implementation

This chapter provides the formal syntax of the language and gives a detailed explanation of the
implementation of the first core novel feature in SFJ, the semantic type system and subtyping
relation. We then consider the algorithms used in the implementation for their efficiency and
any flaws the subtyping relation may have.

3.1 Syntax
3.1.1 Syntax of Types

The syntax of types is given by the following grammar (Dardha et al. 2013; 2017):

τ ::= α | µ Type term
α ::= 0 | B | [l̃ : τ] | α and α | not α Object type (α-type)
µ ::= α → α | µ and µ | not µ Method type (µ-type)

(3.1)

α-types are used to type fields and µ-types are used to type methods. Type 0 is the empty type.
Type B denotes the basic types, such as integers, booleans, etc. Record types [l̃ : τ], where l̃
is a sequence of disjoint labels, are used to type objects. Arrow types α → α are used to type
methods. The boolean types using and and not have their expected set-theoretic meanings, and
or is obtained by their combination.

3.1.2 Syntax of Terms

The syntax of terms is given by the following grammar and is based on the standard syntax of
terms in FJ Igarashi et al. (1999); Dardha et al. (2013; 2017).

We assume an infinite countable set of names, with some special names: Object indicates the root
class, this indicates the current and super indicates the parent object. We let A,B,C, . . . range over
classes; a,b, . . . over fields;m,n, . . . over methods and x,y, z, . . . range over variables. Constants c
range over an infinite countable set K

Class declaration L ::= class C extends C {α̃ a; K ; M̃ }
Constructor K ::= C (α̃ x) { super(x̃); t̃his.a = x̃ ; }
Method declaration M ::= α |µ m (α |µ x) { return e; }
Expressions e ::= x | c | e .a | e .m(e) | new C (̃e)

(3.2)

A program (L̃, e) consists of a sequence of class declarations L̃ and an expression e to be evaluated.

A class declaration L specifies the name of the class, the name of the parent class it extends, its
typed fields, the constructor K and its method declarations M . The constructor K initializes the
fields of the object by assigning values to the fields inherited by the super class and to the fields
declared in the current this class. A method declaration M specifies the signature of the method,

10

namely the return type, the method name and the formal parameter as well as the body of the
method. Expressions e include variables, constants, field accesses, method invocations and object
creations.

We do not allow programs that would cause L̃ to be ill-defined, such as declaring a constructor
called B in class A, multiple field or methods with the same name or declaring class A which
extends a non-existing type. All these checks are also the same ones used in FJ (Igarashi et al.
1999).

In the theoretical development by Dardha et al. (2017), unary methods are used without loss
of generality: tuples of arguments can be modelled by an object that instantiates a special class
containing as fields all the needed arguments.

We include the translation of the syntax of terms into the ANTLR grammar for SFJ in Appendix
A.1.

3.2 Implementation of subtyping algorithm
3.2.1 Finite Types

Since we want to use types τ in practice in SFJ, we restrict them to finite trees whose leaves
are basic types with no cycles. For example, the recursive type A = [a : A] denotes an infinite
program tree new A(new A(· · ·)), hence we avoid it as it is uninhabitable. Similarly the types
A = [b : B], B = [a = A] create a cycle in our program tree and would also be impossible to
inhabit.

The above type definitions are allowed but still uninhabitable in Java since you can always
instantiate a object of any type by assigning the value null to it. However, since we restrict SFJ
to the functional fragment of Java, we cannot do this.

Given a SFJ program, we use the ANTLR grammar, given in Appendix A.1, to create a parser
and run this parser to give us an abstract syntax tree (AST) of the program. The AST can be
visited to make sure that our program is well-defined. We mark any classes containing fields
typed with only basic types as resolved otherwise, as unresolved. This is then used by Algorithm
1, which checks if the type definitions in the program are valid, i.e. they are finite trees whose
leaves are basic types with no cycles.

If the types in the program are finite trees whose leaves are constants with no cycles, then at each
iteration of the algorithm we are going to be able to resolve at least one type or all the types are
resolved. If we do not resolve at least one type and not all types are resolved, we know we have
encountered a cycle in the type definition.

3.2.2 Defining the Subtyping Relation

Now, given that we know that the type definitions in our program are valid, we can define the
subtyping relation for this program.

Building upon the interpretation of types as sets of values, we define the subtyping relation by
defining a map from a type to the set of its subtypes, with the property that the set of values of a
subtype is included in the set of values of the type. As a first step, in Equation 4.4 we define the
relation for the basic types as these will be the same for all SFJ programs and will not change.
We also define the Universe type that holds the set of all types.

11

Data: classes, a set of classes, each marked as resolved or unresolved depending on if their
fields contain only basic types.

Result: True if all classes are valid type definitions, False otherwise.
begin

do
resolutionOccured ←− f alse
for class that is unresolved in classes do

resolved ←− true
for field in class that contains a class type do

if type of field is unresolved then
resolved ←− f alse

end
end

if resolved = true then
class ←− resolved
resolutionOccured ←− true

end
end

while resolutionOccured = true

if not all classes are resolved then
return False

else
return True

end
end
Algorithm 1: Algorithm which given a set of classes which are marked as resolved or
unresolved, determines if all the classes can be resolved, i.e. if all the types are finite trees with
no cycles and with basic types as leaves

12

Double = {Double, Float, Int, Short,Byte} Float = {Float, Short,Byte}
Lonд = {Lonд, Int, Short,Byte} Int = {Int, Short,Byte}
Short = {Short,Byte} Byte = {Byte}
Boolean = {Boolean} Void = {Void}

Universe = {Double, Float, Lonд, Int,
Short,Byte,Boolean,Void}

(3.3)

It can be seen from the initial definitions that the subtyping relation is reflexive and transitive,
but not necessarily symmetric.

We would also like to note that Int is not a subtype of Float , as in the definition of floating-point
numbers that is used in Java 1, Float only has 23 bits for the mantissa, meaning it cannot represent
all possible values of a 32 bit Int accurately and therefore Int is not fully set-contained. However,
this is not the case for Int and Double as the latter has a 52 bit mantissa. This is also why Lonд is
not a subtype of Double.

Final Relation Finally, Algorithm 2 defines the subtyping relation for all class types. The order
in which the class types are added to the relation does not matter, as the algorithm guarantees that
all subtypes for all types will be found, no matter the order. We give a description of Algorithm
2 to aid comprehension of the algorithm.

We iterate over the keys of the relation mapping, further called the existing type. However we
can skip all those that are a basic type as no class type will have or be a subtype of a basic type.
We first check if the the class we are currently processing, further called the new type, has types
in its fields or methods that are currently not in the subtyping relation. If so, we stop and add
the new type to the list of unprocessed classes, as we are not be able to correctly reason if it is a
subtype due to the missing type. This list of unprocessed classes will get recursively called to be
processed again, and this process will is guaranteed to terminate because we have already checked
using Algorithm 1 that all types are valid.

We check if the new type is a subtype of the existing type. The fields and methods of the new
type must be subsets of the existing type. We also check the structural subtyping rules for field,
method return and method argument types as given in Section 2.2. If these all hold, then the
new type is a subtype of the existing type and is added to its relation mapping.

We then repeat the above process but instead check if the existing type is a subtype of the new
type. However we do not have to check if the call to checkSuperSet(existinдClass, class) return
False as we are guaranteed that since the existing type is already in the subtyping relation, all of
its field and methods contain types that are also in the subtyping relation. We then add the new
type to its own relation mapping for reflexivity and to the Universe type.
The subtyping algorithm finds all nominal and structural subtypes as it examines all pairs of types.
It finds all nominal subtypes as child types inherit all fields and methods of their parent class, so
when considering the parent-child pair, the child is always guaranteed to be a superset. Similarly,
for all other pairs of types, the algorithm checks if one is a superset of the other, and if so, they
are related by structural subtyping. For example, in the extreme situation, the type empty = [],
will have all classes as structural subtypes as any other class can be safely structurally substituted
for it. Therefore the same algorithm finds both nominal and structural subtypes without needing
to examine the nominal subtyping hierarchy as field and method inheritance guarantees they
will be found through structural subtyping.

1See IEEE-754 for reference

13

Data: classes, the set of classes in the program for which we have not yet defined a subtyping
relation.

relation, a map of types to the set of its subtypes. Initially the map only contains the entries
defined in Equation 4.4.
begin

Function generateRelation(classes: List<Class>):
unprocessed : List < Class >←− []
for class in classes do

if addClass(class) = False then
unprocessed .add(class)

end
end
if untyped , [] then

дenerateRelation(unprocessed)
end

end

Function addClass(class: Class)→ boolean:
for existing class type in relation do

if checkSuperSet(class, existingClass) = false then
return False

end
checkSuperSet(existinдClass, class)

end
relation[class].add(class)
relation[Universe].add(class)
return True

end

Function checkSuperSet(class: Class, other: Class)→ boolean:
f laд←− True

for field in class do
if field contains type not in relation then

return False
end
if other does not contain field then

f laд←− False
else

if other.field.types does not fully contain field.types then
f laд←− False

end
end

end

for method in class do
if method contains type not in relation then

return False
end
if other does not contain method then

f laд←− False
else

if other.method.types does not fully contain method.types then
f laд←− False

end
end

end

if f laд = True then
relation[other].add

end
end

end
Algorithm 2: Recursive algorithm for creating a semantic subtyping relation by calling the
function generateRelation with the set of class types that are finite trees. Given that we know
all classes are valid types, we are guaranteed it will terminate

14

3.2.3 Typing Values and Closing the Circularity

Following the framework in Section 2.1 to define a sematic type system, we next need typing
rules for values, i.e. we should be able to type any expression that is able to be constructed in the
syntax of terms, given in Equation3.2.

Expressions e ::= x | c | e .a | e .m(e) | new C (̃e) (3.4)

For the expressions e .a and e .m(e), we can type these values simply by looking at the type of the
field or return type of the method. For object constructors new C (̃e), the type of this value will
be the class type C. For variables x , we can look at what the type is of the method argument, as
this is the only possible situation a variable is allowed to be used.

For the constants c, these are the literal values in our language such as 42, 3.14 or True. It is not
as simple as it may appear to type these correctly so that boolean type operators in our language
behave correctly.

In most languages such as Java, literal values are cast to the type that is expected in the context
they are used. For example, a method long дetNum(){return 42} automatically casts the value to
the type lonд. In other situation such as variable type inference in Java var x = 42, the compiler
treats the value as an int too as this is the most efficient number type in hardware operations.

However, in our system, types represent sets of values which must interpret boolean connectives
in a set-theoretic way. Given the type with boolean connectives (int and not byte), this type
represents the values −231 to 231− 1 from which are removed the values −128 to 127. If we were
to type the value 42 as an integer, this would be accepted by the boolean type, but would not be
in the set of values of the type, thus breaking our semantic type system.

Therefore, for all constants c, we use a strong typing to assign values the most restrictive types
possible, i.e. the type with the smallest amount of values which still contains this value.

With this typing rule, the value 42 is assigned the type Byte, so would correctly not be accepted
as a value of the type (int and not byte).
We have now defined how to type any expression that can be formed by the syntax and so have
defined our typing rules. The relation defined by the typing rules and the abstract model defined
in Section 3.2.2 coincide, so we have closed the circularity and defined our semantic type system.

3.3 Analysis of the Subtyping Relation
3.3.1 Complexity and Efficiency of the Subtyping Algorithm

The complexity of Algorithm 2 is O(n), however the complexity of Algorithm 2 is O(n2). For the
small example programs that SFJ has currently compiled for this has not been an issue, however
if the language was extended with a standard library with several hundred if not thousand of
classes, then each additional class will incur larger penalties in compiler performance. However,
the real-life impact of such a situation has not yet been explored.

Due to the fact that our subtyping relation can possibly be symmetric because of our inclusion
of structural subtyping, this n2 behaviour is needed to ensure we fully find all subtypes for each
type. In a system with solely nominal subtyping, we only need to traverse the subtype hierarchy
to find all subtypes, which is a linear operation.

15

3.3.2 Flaws of Structural Subtyping

Given the observed flaws in complexity in Algorithm 2 due to structural subtyping, we would
like to point out another flaw the reader might see in the structural approach but we argue for
why we disagree with this flaw.

Consider two structurally equivalent class types coordinate = [x : int,y : int, z : int] and
colour = [x : int,y : int, z : int]. They are structural subtypes so they can be used interchangeably
in our type system, but their meaning is completely different. Therefore, we lose some safety in
our language as it is unlikely we would like to use a colour where we expect a coordinate, but in
the eyes of the type-checker, it is correct.

Dardha et al. (2017) suggest a possible extension to the language by including a nominal keyword
that can be used in the class signature to indicate that this class should only be considered by
the nominal component of the type system. However, being optional, we argue that this would
create more bugs than problems it would solve due to forgetting the keyword. A similar issue
occurs for example with destructors in C++ classes. Leaving out the virtual keyword of the parent
class destructor in certain situations can lead to memory leaks. We therefore argue instead that an
additional structural keyword could be introduced as an extension to the language which specifies
that this class can have structural subtypes. However, a class with this keyword is not added to
the subtyping relation of other structurally similar classes which are not marked structural as this
would weaken the invariant conditions of this class.

In languages with solely nominal subtyping such as Java, one can define an overridden method
to perform the opposite logic to what the super class is expecting, such as:

class A extends Object { class B extends A {
.
int lenдth int дetLenдth(){ return −lenдth }
int дetLenдth(){ return lenдth } }

}

(3.5)

Therefore, even languages without structural subtyping leave an expectation on the developer to
check what they are doing is correct. Hence we argue that the integration of both in SFJ is a
valid idea as either subtyping system is no more or no less than the other, so having both available
gives the user the choice to use either to where they are best suited, which should lead to more
correctly defined abstractions in the program, which should lead to less bugs in the program.

For example, when structural subtyping is used correctly, it makes certain recurring challenging
programming tasks effortless. Take the task of dependency injection in testing for mocking class
behaviour. In languages like C++, we may wish to not make the methods in our classes virtual
(making them not overridable) to perhaps not incur the performance overhead of virtual methods.
In these situations, mocking such a class is near impossible without changing the type hierarchy
or class definition. With structural subtyping, we simply define a class with the same fields and
method signatures, and can provide our own implementations in the methods. Because the type
will be structurally similar, it is effortless to use our new class as an argument where the old class
is expected.

16

4 Exploiting Semantic Subtyping

In this chapter we demonstrate that having defined the mathematical machinery behind the
semantic type system, it is easy to add features into the language which exploit the set-theoretic
subtyping system and make writing SFJ programs more concise and intuitive. This introduces the
second core novel addition in SFJ of boolean types, along with method types and multi-methods.

4.1 Implementation of Boolean Types
Now that we have define our semantic type system, it is easy to implement boolean types in our
language.

4.1.1 Illustrative example of Boolean Types

We demonstrate the implementation of boolean types by using our main motivational example
given by Dardha et al. (2013) which illustrates the benefits of boolean types.

The Polygons Our example considers a set of polygons, such as triangles, squares and rhombuses.
We want to define a method diagonal that takes a polygon and returns the length of its longest
diagonal, however such a method only is defined for polygons that have at least four sides
Therefore we need to find a way of implementing the type hierarchy in such a way that triangles
are excluded. In Java this could be done in the following way:

class Polyдon {. . .}
class Trianдle extends Polyдon {. . .}
class Other_Polyдons extends Polyдon {

. . .
double diaдonal(Other_Polyдons shape) {. . .}

}

class Square extends Other_Polyдons {. . .}
class Rhombus extends Other_Polyдons {. . .}

(4.1)

Or by means of an interface Diagonal:

public interface Diaдonal {
double diaдonal(Polyдon shape);

}

class Polyдon {. . .}
class Trianдle extends Polyдon {. . .}
class Square extends Polyдon implements Diaдonal {. . .}
class Rhombus extends Polyдon implements Diaдonal {. . .}

. . .

(4.2)

However, the first is error-prone and could be said to be not self-documenting (Schach 2007),
i.e. the type hierarchy does not explain why this extra class OtherPolyдons has been created.

17

The second solution is more informative, however given many other methods we may want
wish implement, it would quickly become cumbersome to have a long list of interfaces for each
polygon we add.

If we were not able to write our own abstractions and rather were given a legacy system, the most
likely and natural abstraction would be for Polygon to be the parent type and all more specific
shapes extend this class. Now the only way we would be able to define such a method diagonal is
to use instanceof to see the type of the argument Polyдon at run-time and throw an error if we
encounter a triangle. However now we no longer check at compile-time whether the arguments
we are passing are correct, leading to possible bugs at run-time.

In SFJ, we instead propose a more elegant solution with the use of boolean types where the check
for excluding triangles happens at compile-time. We can simply define a method diagonal which
takes an argument of type Polygon and not Triangle.

class Polyдon {. . .}
class Trianдle extends Polyдon {. . .}
class Square extends Polyдon {. . .}
class Rhombus extends Polyдon {. . .}
class Diaдonal {

. . .
double diaдonal((Polyдon and not Trianдle) shape){. . .}

}

(4.3)

4.1.2 Type-Checking Boolean Types

Double = {Double, Float, Int, Short,Byte} Float = {Float, Short,Byte}
Lonд = {Lonд, Int, Short,Byte} Int = {Int, Short,Byte}
Short = {Short,Byte} Byte = {Byte}
Boolean = {Boolean} Void = {Void}
Polyдon = {Polyдon,Trianдle, Square,Rhombus} Trianдle = {Trianдle}
Square = {Square} Rhombus = {Rhombus}
Diaдonal = {Diaдonal}

Universe = {Double, Float, Lonд, Int, Short,Byte
Boolean,Void, Polyдon, Square
Square,Rhombus,Diaдonal}

(4.4)

We first generate the subtyping relation for our solution in Equation 4.3 to give the relation in
Equation 4.4.

Recall the method diagonal in class Diagonal, we can see that the result of the set operation on its
parameter type gives the following set of polygons:

Polyдon and not Trianдle = {Polyдon, Square,Rhombus} (4.5)

The not Triangle operation is achieved by Universe \Trianдle. Therefore if we type-check the
following SFJ expression:

(new Diaдonal()).diaдonal(new Square()) (4.6)

18

the argument new Square() is typed using our typing rules given in Section 3.2.3 to be of type
Square, and the subtypes of Square is {Square} which is fully contained in the set of the parameter
type {Polyдon, Square,Rhombus}, so this expression successfully type-checks.

On the other hand, given the expression:

(new Diaдonal()).diaдonal(new Trianдle()) (4.7)

the subtypes of the argument is {Trianдle} which is not contained in the set of subtypes for the
parameter so therefore this does not type check.

We can also demonstrate the example from Section 3.2.3. Recall the type (int and not byte).
The result of the set operations would be:

int and not byte = {Int, Byte} (4.8)

Then given the classes:

class Inteдer {
. . .
int num
int дetNum(){return this .num}

}

class Calculator {
. . .
double acceptLarдeNum((int and not byte) n){. . .}

}

(4.9)

with the following expression to evaluate:

(new Calculator ()).acceptLarдeNum((new Inteдer (2)).дetNum()) (4.10)

we can show that this expression does not type-check. The value 2 is given the type Byte, but
is valid for the field num as the subtypes of Byte, namely just itself, is fully contained in the
set of subtypes of Int . However, the argument to the function acceptLarдeNum is of type Int ,
which has subtypes {Int, Short,Byte}. We can see that this is not fully set-contained in the set of
subtypes of Equation 4.8, so the expression does not type-check.

4.1.3 How Boolean Types are Represented in SFJ

We next show how we ensure that compound boolean statements are evaluated consistently and
how we represent the boolean types in our implementation.

If we refer to the SFJ grammar in Appendix A.1, we can see in the type production rule we
enforce that every single boolean connective is surrounded by brackets to enforce consistency in
the definitions. Take the boolean type type1 and type2 or type3. Without brackets, we do not
know how to consistently evaluate this type as they could mean different things:

type1 and (type2 or type3) = (type1 and type2) or (type1 and type3)
or

(type1 and type2) or type3 = (type1 or type2) and (type1 or type3)
(4.11)

19

Int and not Byte

AND

Int Not Byte

Int

Int

Type_1 and (type_2 or type_3)

AND

type_1 OR

type_2 type_3

Figure 4.1: Representation of how the types int , int and not byte and type1 and (type2 or type3) are
stored.

Therefore such a type is not allowed and the user has to specify which of the two alternatives
they mean to use.

Secondly, once we have a boolean type which is consistent, we can evaluate the final result by
storing it as a tree, such as shown in Figure ??. Starting from the root node, we check if it is a
type or a boolean connective. If it’s a type, we can look up the type in our subtyping relation
and return the set of of its subtypes. However, if its a boolean connective, we know it will have
two child nodes and we can inspect them and apply the same process until they both return us
a set of subtypes. We can then get the result of the boolean connective node by applying the
corresponding set operation to the two sets of subtypes it received.

4.2 Unusable Boolean Types
Similar to structural subtyping, we would like to highlight a potential issue the reader might
notice with the use of boolean types.

The use of boolean types can restrict the set of subtypes we accept, such as with the example of
Polyдon and not Trianдle in Equation 4.5. However, a problem arises in that we can widen the
set of subtypes that we accept such that there is no guarantee about how the object can be used
at run-time.

Take the subtype relation from the Polygons example, Equation 4.4. If we create a boolean type
not Byte, this corresponds to the set of accepted subtypes {Short, Int, Lonд, Float,Double,Boolean,

20

Void, Polyдon, Square,Rhombus,Trianдle}. An argument of such a type accepts many values, but
what can such an argument actually be used for?

It is not guaranteed that it is a numerical value that can be used in a mathematical expression, nor
is it guaranteed to be a polygon object whose field or method we can access. If we were to try
and access a field, then at runtime this would sometimes be correct but in other times this would
cause an error. So in which ways should such a type be allowed to be used in expressions?

We follow the opinion we expressed in Section 3.3.2 and leave an expectation on the developer
to use boolean types in such a way that they are useful. We implement the simple check that in
use of a value that has a boolean type, then at least one of the subtype alternatives is valid, e.g.
the field we are trying to access is defined for at least one subtype. However otherwise leave the
developer to check that the type is used correctly.

An alternative would be strict checking that the use of a value is defined for all of its subtypes.
The diagonal method from the Polygons example 4.3 would still be an accepted type, however
almost any use of the not Byte type would result in a compiler error.

However we feel this would go against our aims of creating a language where the programmer
is given the choice to use a more expressive type system. Additionally, a static type checking tool
could be developed for SFJ which warns the user if a value is used in a way which is not defined
for all of its subtypes, giving the user greater confidence in using boolean types.

4.3 Method Types
While our more elegant solution to the Polygons problem 4.3 is an improvement in terms
of compactness and clarity, it is not perfect. One oversight of this solution is that we define
a single method for all accepted alternatives, however the implementation of calculating the
longest diagonal will be different for each of them. To solve this using the language constructs
available to us would again involve us having to use instanceof to check the type at run-time
and executing the correct implementation for each type. Alternatively we could also have the
following implementation:

class Polyдon {
. . .
double diaдonal(){. . .}

}

class Trianдle extends Polyдon {. . .}
class Square extends Polyдon {

. . .
double diaдonal(){. . .}

}

class Rhombus extends Polyдon {
. . .
double diaдonal(){. . .}

}

class Diaдonal {
. . .
double diaдonal((Polyдon and not Trianдle) shape){return shape .diaдonal()}

}

(4.12)

However what if the class Polygon also did not implement the method diagonal, seeing how it
is a generic class and we do not how we would be able to calculate a diagonal for it. The type

21

declaration that is currently used in the method diagonal would no longer be valid and we instead
would have to specify each alternative manually (Square or Rhombus or . . .) which is tedious
and error-prone.

This is where the arrow type (method type) from our syntax of types 3.1 can be used. We can
instead define the class Diagonal as follows:

class Diaдonal {
. . .
double diaдonal((diaдonal : Void→ Double) shape){return shape .diaдonal()}

}

(4.13)

We define the type as accepting any type and its subtypes which implement a method called
diagonal which is a method from the type Void to a Double. We also finally see that the type Void
is used in SFJ to indicate a method that has no arguments, as due to being a functional language,
we do not have any fields or method return types which can be of type Void.
In order to type-check the value passed to such an argument, we can at compile-time build
a collection of types {type1, type2, . . .} which have this method. We can do this the simply
iterating over the same list of classes in the program as when we were creating our subtyping
relation and checking for the presence of the required method. The set of accepted types would
then be the union of all their corresponding subtypes ([[type1]]B ∪ [[type2]]B ∪ . . .).

However, calculating this collection of types for each method of every class would be computa-
tionally unnecessary as only few of these would be used for method types. Therefore we only
compute on demand during type-checking them when we come across such a type. This makes
compilation times exceedingly quicker the more classes are in our program, especially if we cache
the method types we have already encountered, as it is likely to come up again if it has already
been used once. However, this caching behaviour has currently not been implemented in SFJ as
compilation speed has so far been orthogonal to the aims of this project.

We can therefore use method types to statically include or exclude a portion of our type hierarchy.
However unlike the use of interfaces such as in the suggested Java solution 4.2 to the Polygons
problem, the values that can be accepted by a method type do not have to be related to each
other in any way in the class hierarchy. This becomes increasingly useful if we have a legacy
system as we can still accept all the classes that have defined Diagonal methods without having to
go back and add interface implementations.

4.4 Multi-methods
One key feature that we restore in SFJ that we lost from Java is that of overloaded methods,
however we implement these as multi-methods. Methods within a class must still have unique
names, however when using nominal subtyping, we can extend the inherited method.

For example, looking back at Equation 2.6, themethod length has type string→ int inA. However,
in B it has type (string→ int) ∧∧∧ (int→ int), which can be simplified as (string∨∨∨ int) → int.
However, what happens if the extended input types are not disjoint, unlike the example in
Equation 2.6:

class A extends Object { class B extends A {
.
float length (float n){ . . . } int length (int n){ . . . }

} }

(4.14)

22

Considering the example in Equation 4.14, if we called method length on an object of class B with
the value 2, should it perform the expression in its own method or the method of A considering
they both accept it as an argument. No matter which one we choose, the return type of the value
is still going to be the same float ∨∨∨ int which simplifies to float, however the expressions in the
methods could be entirely different.

We decided to follow common object-oriented conventions and we perform the expression of
the multi-method that is closest to the class of the object we are calling it on, i.e. in the case of
our example, the method length in B would be called.

We do this storing the type of length in B without regard of multi-methods, as we can always
generate the return type by walking up the tree of parent types, but it allows us to decide which
implementation to choose.

4.5 Additional Features
One of the features that we implemented to increase the usability of SFJ as a language is removing
the need for forward declarations of classes. This means that classes can be can be used before
they are defined later on in the file of the program, such as in Java.

For example for our polygons example 4.3 this is not necessarily obvious, but it could have been
also defined as follows:

class Diaдonal {
. . .
double diaдonal((Polygon and not Triangle) shape){. . .}

}

class Polyдon {. . .}
class Trianдle extends Polyдon {. . .}
...

(4.15)

In a language like C++, this would have required defining the structure of all the classes in a
header file, however by incorporating it into the language, we make the language easier to use.

Implementing this requires that we do multiple passes over the AST of our program, which will
cause an impact on compilation speed. On our first pass of the AST we gather all the signatures of
the classes and their field and methods and store it in a program tree, which is a condensed version
of the AST with all unneeded information removed. At this point we have all the information
needed to create the subtyping relation by running Algorithm 2 and Algorithm2 on the all the
class nodes at the top of our program tree.

We can now do a second pass over our program, this time on our program tree. During this pass
we check what we were unable on our first pass such as checking that the arguments given to the
super call inside class constructors type-check with respect to the subtyping relation. Now that
we have our typing rules and subtyping relation, we can now also make sure that the expressions
in methods type-check according to their expected return type.

23

5 Code Generation

In this chapter, we define for code generation for a SFJ program as just a type system which
we can use to type-check programs is without much use if we cannot run these programs on a
computer.

5.1 Implementation
Due to extenuating circumstances around the COVID-19 pandemic, the code generation im-
plementation of SFJ was not able to be completed in this project, however we still provide the
theoretical implementation for the use of any future work.

Given the similarity of SFJ to Java, we felt that the usage of the Java Virtual Machine (JVM) 1
would be most suitable for code generation by transpiling SFJ programs into Java bytecode. This
is the approach used by object-oriented languages such as Kotlin 2 and many others.

The key challenge in implementing code generation compared to other languages which transpile
their programs into bytecode is that for example, a single field in SFJ with type int or bool actually
represents two Java fields, one of type int and another of type bool , of which only one is inhabited
with a value.

Therefore to reduce the amount of alternatives for which we would need to generate code, we
first analyse our program and reduce the boolean types by keeping only the alternatives which
actually get used in the program. For example, if the field of type int or bool only ever gets
initialised with a boolean value, we can reduce it and make it a field of a single type bool . Similarly
the numerical basic types can also be reduced to their largest type without consequence, such
as int and not byte can be reduced to just int as we have already type checked all literal values
passed to such a type.

After reducing the boolean types in our program, we have to expand all our still existing boolean
types and consider each alternative in the result of the set operation. Staying with the example
of a field named f 1 of type int or bool , we would define in our class two fields int_f 1 and
bool_f 1 with types int and boolean respectively. In order to initialise these field, we use the
constructor overloading capabilities of Java to generate an overloaded version for all combinations
of constructor parameters. In each constructor, each expanded parameter alternative that is not
used is initialised to null and only the expanded parameter that matches the type of the parameter
in this constructor is initialised with a value.

For methods, we also use the overloading capabilities of Java to define a method for each type
in the expanded method parameter, all with the same method body. Depending on which
alternative the argument inhabits at run-time, a different method will be dispatched to. Then
depending on if the actual argument is valid for the method body, the method will return a value
or we will encounter an exception from the JVM.

1See https://docs.oracle.com/javase/specs/jvms/se7/html/ for reference
2https://kotlinlang.org/

24

For the access of any field of an object, we generate code that checks for each alternative of the
field if it is non-null and if it is non-null, then we perform the generated code for the remaining
expression. However at runtime, only one branch of will be true, and this is the branch of
generated code which will be executed.

For structural subtypes, we create an actual nominal subtype with the same implementation for
each structural subtype a type has, so that it is accepted as a proper subtype in Java.

Like methods with boolean types, we implement methods with method types the same way by
defining an overloaded alternative for each type that implements the method of the method type.

We have now defined the code generation for each expression in our syntax of terms and for field,
constructor and method declarations, so therefore have defined how to generate the bytecode for
any SFJ program.

5.2 Problems with Code Generation
One of the problems that can easily be seen is that when the boolean types are used incorrectly
such as the example not Byte from Section 4.2, then we will generate lots of bytecode as we
have to consider each alternative. While this should theoretically not affect the time for the
bytecode to run on the JVM, the time for the compiler to generate bytecode for each alternative
could take a significant amount of time, especially when more and more classes are added to
the program. However, it would have to be evaluated if compilation times would be affected so
much that compilation is infeasible for large programs. Yet, considering that there exist project
with multi-million lines of Java code 3 which compile in an acceptable amount of time, we do
not think this should be a problem for most programs.

3https://www.visualcapitalist.com/millions-lines-of-code/, accessed 31/03/2020

25

6 Evaluation

This chapter describes the evaluation methods for this project. The quality of the language as a
software product was tested. The quality if the language in terms of ease of use of new users was
also evaluated. Finally, the language was evaluated if it met all the requirements that we set of
the type of programming problems it should have made easier.

6.1 Testing
One of the major limitations we found of testing a programming language which was built as
non-commercial, prototype product is that code ends up very tightly coupled, which makes unit
testing difficult. Therefore it was decided that the code was mainly tested using regression testing
of a single constantly evolving test program which aimed to cover all possible edge cases of class
definitions. However, another difficulty which was found is that due to the infinite possibilities
of programs, it is much more difficult to find edge cases. When your input is simpler such as
integers, there are well known edge cases such as zero, one, negative one, and the max values.

The regression test was used to create a code coverage report, pictured in Figure ??. The testing
achieves a line coverage of 71%, which is close to the 80% figure that is aimed for in software
project by companies such as Microsoft 1

Figure 6.1: Coverage Report indicating a line coverage of 71%

6.2 User Evaluation
The second evaluation metric of the language was to evaluate whether users found the semantic
type system and boolean types obvious to use, however due to extenuating circumstances this
could not be conducted. We include our evaluation plan as an area of future work.

1https://docs.microsoft.com/en-us/visualstudio/test/using-code-coverage-to-determine-how-much-code-is-being-
tested

26

6.2.1 Evaluation Strategy

Users are to be given the following scenario:

“ Our problem considers a set of polygons, such as triangles, squares and rhombuses. We want
to define a method diagonal in a class Diagonal that takes a polygon and returns the length of its
longest diagonal, however such a method only is defined for polygons that have at least four sides.
Therefore we need to find a way of implementing this method in such a way that triangles are
excluded.

You are required to define at least the following four classes: Triangle, Square and Rhombus
and Diagonal. The class Diagonal must have a single method diagonal that upon being passed an
object of type Square or Rhombus, returns the integer two. Upon being passed an object of type
Triangle, it raises any sort of exception, whether it be at compile-time or run-time. The classes
Triangle, Square, Rhombus and Diagonal are not required to have any fields. You do not have to
run the program to complete the task but can do so if wanted. ”

and are given one minute to read it. They are required to write a solution to the scenario in Java
on a Windows machine using the program Notepad without any assistance of other people or
programs. They are timed and monitored for how long it takes them to create a solution.

The same participants are then repeat this but implement the solution in SFJ. All are given Section
3.1 as documentation to the language. Half of the participants are also given the additional
documentation as follows:

“ The interpretation of types is of sets of values, so we define the subtyping relation by defining a
map from a type to the set of its subtypes, with the property that the set of values of a subtype is
included in the set of values of the type.

Int = {Int, Short,Byte}
Byte = {Byte}
int and not byte = {Int, Short}

”

The participants shall all be students who are enrolled on a single or joint honours Computer
Science degree of any year of study. The time to solve both problems shall be anonymised, but
their year of study and programming language of choice shall be recorded for analysis purposes.

The aim of the experiment is that being given the problem and being allowed to think it through
in Java beforehand, then when given the second problem, the participants who are not given
the additional documentation perform the same task in the same or longer time, whereas the
participants who are given the additional documentation perform the task quicker than their first
time. It shows that when given an unrelated example of the semantic type system and boolean
types, users can apply it to the problem given to them, showing that the language is intuitive to
use.

6.3 Summary
One of the main requirements of SFJ was that it made programming more intuitive and therefore
reduced the number of lines needed for the same problem. We can see from Listings 6.1 and
6.2 that the solution in SFJ took only thirteen lines whilst the equivalent solution in Java took
sixteen lines of code. While we do not have such a comparison for a program of larger length
and complexity, it is already visible that if we restrict Java to an equivalent functional subset as
SFJ, then we are able to express all functional Java programs in SFJ, meaning that we can only
make our programs more concise.

27

interface Diagonal {
double diagonal(Polygon shape);

}
class Polygon {

Polygon(){}
}
class Square extends Polygon implements Diagonal {

Square(){}
double diagonal(){return 2;}

}
class Triangle extends Polygon {

Triangle(){}
}
class DiagonalCalculator {

double getDiagonal(Diagonal shape){return shape.diagonal();}
}

Listing 6.1: Polygons example solution in Java

class Polygon {
Polygon(){}

}
class Square extends Polygon {

Square(){}
double diagonal(){return 2;}

}
class Triangle extends Polygon {

Triangle(){}
}
class DiagonalCalculator {

double diagonal((Polygon and not Triangle) shape){return shape.diagonal();}
}

Listing 6.2: Polygons example solution in SFJ

The language satisfies our minimum requirements of a semantic type system which represents
type as sets of values, and complements this type system with boolean types, as shown in Section
4.1.

We can also see how expressive the end language is by seeing if we are able to reintroduce the
typical programming constructs that were removed in FJ given by Dardha et al. (2017) Section
8.3.

Our current implementation of multi-methods is able to reintroduce the instanceof construct,
exactly as defined. However for the implementation of the if-then-else, we are missing the ability
to use singleton values from our types of sets of values as parameter types, such as the [true]
type. If we did have this construct, we would also be able to add the try-catch construct back into
our language. It is visible however how the mathematical model is still more powerful than our
language due to the much greater flexibility it has, but our language is close and has implemented
other additional features such as method types.

As a software project, the language could be improved by the introduction of a formal testing
suite with targeted unit tests. However what would be better is to expand the current regression

28

testing even more. Given that the regression tests are testing a compiler, they also automatically
show which feature in our language has regressed by the error message of the compiler.

29

7 Demonstration Paper

This chapter briefly describes the tool paper about SFJ which was submitted to COORDINA-
TION 2020. We include a reference to the paper and demonstration video that were submitted
(Usov and Dardha 2020).

7.1 COORDINATION 2020
The 22nd International Conference on Coordination Models and Languages (COORDINA-
TION) is a conference which aims to promote research into new models, architectures, languages
and verification techniques in order to cope with the complexity induced by the demands of mod-
ern software development. A paper was submitted as a tool paper to demonstrate our innovative
prototype language which through semantic subtyping and boolean types, allows users to define
more intuitive types which should lead to fewer logical bugs in programs. The paper is titled
SFJ: An implementation of Semantic Featherweight Java and discusses a subset of this dissertation in
less detail. As of the time of writing, the acceptance of the paper is still pending. The abstract is
as follows:

Subtyping is a key notion in programming languages, as it allows more
flexibility in coding. There are two approaches to defining subtyping
relations: the syntactic and the semantic approach. In semantic subtyp-
ing, one defines a model of the language and an interpretation of types
as subsets of this model. Subtyping is defined as inclusion of subsets
denoting types. An orthogonal subtyping question, typical of object-
oriented languages, is the nominal vs. structural subtyping. Dardha et al.
Dardha et al. (2013; 2017) defined boolean types and semantic subtyping
for Featherweight Java (FJ) and integrated both structural and nominal
subtyping, thus exploiting the benefits of both approaches. However,
these benefits were illustrated only at a theoretical level, but not exploited
practically.

In this paper, we present SFJ—Semantic Featherweight Java, an imple-
mentation of FJ which features boolean types and structural subtyping
as well as nominal subtyping. The benefits of SFJ, illustrated in the paper
and the video (with audio/subtitles) Usov and Dardha (2020), show how
static typechecking of boolean types and semantic subtyping gives higher
guarantees of program correctness, more flexibility and compactness of
program writing.

30

8 Conclusion

This paper has discussed the reason why type systems exist, and the motivation for why we
should research more expressive type systems. We incorporate a semantic type system as an
extension to Featherweight Java and present this as Semantic Featherweight Java. The syntax
and implementation of SFJ and its semantic subtyping relation were explained in depth, before
we exploited it to easily implement boolean types. This chapter provides a full summary of the
paper and project and looks at what future work remains to be done on this project and on type
systems.

8.1 Summary
In summary, a semantic type system is one where types represent subsets of values in the model
of our language. The subtyping relation is then defined as inclusion of sets denoting types. We
extend Featherweight Java with such a type system to present Semantic Featherweight Java. SFJ
has an extended type algebra with boolean connectives: and, or and not which behave according
to their expected set-theoretic interpretation. SFJ also gives the programmer the choice to use
either nominal or structural subtyping or both. We describe the syntax of the language and
then give the two main algorithms of the project, the first of which decides whether the class
definitions in our program are finite trees with no cycles. The second defines the subtyping
relation as a map from a type to the set of its subtypes, with the property that the set of values of
a subtype is included in the set of values of the type. This subtyping relation allows us to type
all the expression in our language, therefore fully defining the semantic type system. We show
how the type system is easily extended with boolean connectives and give examples how this
allows us to write more concise and intuitive programs through the Polygons example. We discuss
how both types with boolean connectives and structural subtyping can also be used in ways that
guarantee less program correctness but argue that they are no more unsafe than other language
features in commonly used languages. We show another feature, method types, that allows us to
select parts of our class hierarchy which is also easily implemented by having a semantic type
system.

Throughout the paper its been clear that our novel type system allows us to more easily choose
and prune parts of class hierarchy which we want to accept or reject when we have a clear idea
of the system we want to build. However it has also been clear when the resulting system we
want to build is not as clear, it is possible to decrease rather than increase the correctness of the
program, which indicates that more research is required into this topic.

8.2 Future Work
We have mentioned several areas of future research in relation to this project already in the paper.
The first of these is another extension of the language with a nominal or structural keyword that
allows us finer control over when the nominal and structural type systems apply. The second
and perhaps largest area of future research is the implementation of code generation for SFJ. We
provide a theoretical implementation of how it could be implemented but just as our work for

31

the actual implementation of SFJ found unexpected issues to solve, so could this. The third area
of research is research into the efficiency issues we have mentioned for both the semantic subtype
relation generation and code generation and how these perform computationally as we increase
the size of the program we are compiling.

Separately areas of interesting future work could be in guaranteeing that boolean types and
their use are logically coherent and correct, perhaps by only allowing boolean types which only
allow us to restrict the tree of accepted types. If such types were to be always coherent, it could
be analysed whether these additional guarantees in the correctness of our program allows us to
further optimise the generated machine code for these programs.

32

A SFJ ANTLR Grammar

grammar sfj;

program
: classDecl* expression EOF
;

classDecl
: CLASS classlbl=ID (EXTEND extendlbl=ID)? LBRAC

fieldDecl* constructorDecl methodDecl*
RBRAC

;

fieldDecl
: type ID SEMI
;

constructorDecl
: constructorname=ID LPAR (type ID (COMMA type ID)*)? RPAR LBRAC

superDecl
fieldAssignment*

RBRAC
;

superDecl
: SUPER LPAR (ID (COMMA ID)*)? RPAR SEMI
;

fieldAssignment
: THIS DOT field=ID EQ parameter=ID SEMI
;

methodDecl
: returntype=type name=ID LPAR (paramtype=methodType paramname=ID)? RPAR

LBRAC
RETURN expression SEMI

RBRAC
;

expression
: e1=primExpression

(op=(PLUS | MINUS | DIV | MULT) e2=primExpression)?
;

primExpression
: NUMBER
| DECIMAL

33

| TRUE
| FALSE
| ID
| THIS
| primExpression DOT ID
| primExpression DOT ID LPAR (expression)? RPAR
| NEW ID LPAR (expression (COMMA expression)*)? RPAR
;

type
: basicType
| ID
| NOT classlbl=type
| LPAR type1=type bool=(AND | OR) type2=type RPAR
;

basicType
: BYTE | INT | LONG | FLOAT | DOUBLE | CHAR | BOOL
;

methodType
: type
| LPAR (NOT)? ID COLON param=type ARROW returnType=type RPAR
;

BYTE : ’byte’ ;
INT : ’int’ ;
LONG : ’long’ ;
FLOAT : ’float’ ;
DOUBLE : ’double’ ;
CHAR : ’char’ ;
BOOL : ’bool’ ;

TRUE : ’true’ ;
FALSE : ’false’ ;

AND : ’and’ ;
OR : ’or’ ;
NOT : ’not’ ;

CLASS : ’class’ ;
SUPER : ’super’ ;
EXTEND : ’extends’ ;
THIS : ’this’ ;
RETURN : ’return’ ;
NEW : ’new’ ;

LPAR : ’(’ ;
RPAR : ’)’ ;
LBRAC : ’{’ ;
RBRAC : ’}’ ;
EQ : ’=’ ;
PLUS : ’+’ ;
MINUS : ’-’ ;
DIV : ’/’ ;
MULT : ’*’ ;

34

COMMA : ’,’ ;
DOT : ’.’ ;
SEMI : ’;’ ;
COLON : ’:’ ;
ARROW : ’->’ ;

ID : LETTER (LETTER | DIGIT)* ;
NUMBER : DIGIT (DIGIT)* ;
DECIMAL : DIGIT DOT (DIGIT)* ;
SPACE : (’ ’ | ’\t’)+ -> skip ;
EOL : ’\r’? ’\n’ -> skip ;
EMPTY : ’EMPTY’ ;

fragment LETTER : ’a’..’z’ | ’A’..’Z’ ;
fragment DIGIT : ’0’..’9’ ;

Listing A.1: The full ANTLR grammar for SFJ language

35

8 Bibliography

V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose language.
ACM SIGPLAN Notices, 38:51–63, 2003. doi: 10.1145/944746.944711.

J. Boyland and G. Castagna. Parasitic methods: An implementation of multi-methods for java. In
M. E. S. Loomis, T. Bloom, and A. M. Berman, editors, Proceedings of the 1997 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA), pages
66–76. ACM, 1997. doi: 10.1145/263698.263721.

B. Carré and J. Garnsworthy. Spark — an annotated ada subset for safety-critical programming.
In Proceedings of the Conference on TRI-ADA ’90, page 392–402. Association for Computing
Machinery, 1990. doi: 10.1145/255471.255563.

G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. In PPDP’05 - Proceedings
of the Seventh ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
volume 2005, pages 198–208, 2005. doi: 10.1145/1069774.1069793.

G. Castagna, R. D. Nicola, D. Varacca, R. De Nicola, D. Varacca, M. Coppo, M. Dezani-
Ciancaglini, S. Ronchi, and D. Rocca. Semantic subtyping for the pi-calculus. Theoretical
Computer Science, 398(1-3):217–242, 2008. doi: 10.1016/j.tcs.2008.01.049.

O. Dardha, D. Gorla, and V. Daniele. Semantic subtyping for objects and classes. In Formal
Techniques for Distributed Systems - Joint IFIPWG6.1 International Conference, FMOODS/FORTE,
volume 7892 of LNCS, pages 66–82. Springer, 2013. doi: 10.1007/978-3-642-38592-6_6.

O. Dardha, D. Gorla, and V. Daniele. Semantic subtyping for objects and classes. Comput. J ., 60
(5):636–656, 2017. doi: 10.1093/comjnl/bxw080.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping. Proceedings-Symposium on Logic
in Computer Science, pages 137–146, 2002. doi: 10.1109/LICS.2002.1029823.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-theoretically with
function, union, intersection, and negation types. Journal of the ACM, 55, 2008. doi: 10.1145/
1391289.1391293.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory
management in cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 282–293, 2002.

H. Hosoya and B. C. Pierce. XDuce: A Statically Typed XML Processing Language. ACM
Transactions on Internet Technology, 2003. doi: 10.1145/767193.767195.

J. D. Ichbiah, B. Krieg-Brueckner, B. A. Wichmann, J. G. P. Barnes, O. Roubine, and J.-C.
Heliard. Rationale for the design of the ada programming language. SIGPLAN Not., 14(6b):
1–261, 1979. doi: 10.1145/956653.956654.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and
GJ. SIGPLAN Notices (ACM Special Interest Group on Programming Languages), 34(10):132–146,
1999. doi: 10.1145/320385.320395.

36

G. King. The Ceylon Language Specification, Version 1.3, 2016. URL https://
ceylon-lang.org/documentation/1.3/spec/.

B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.,
16(6):1811–1841, 1994. doi: 10.1145/197320.197383.

F. Muehlboeck and R. Tate. Empowering union and intersection types with integrated subtyping.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018. ISSN 2475-1421.
doi: 10.1145/3276482.

T. Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

B. Pierce. Types and Programming Languages. The MIT Press, 2002. ISBN 9780262162098.

S. R. Schach. Object-oriented and classical software engineering, volume 6. McGraw-Hill New York,
2007.

A. Usov and O. Dardha. SFJ: An implementation of Semantic Featherweight Java. On YouTube
https://youtu.be/oTFIjm0A2O8 and on Dardha’s website http://www.dcs.gla.
ac.uk/~ornela/publications/SFJ.mp4, 2020.

A. K.Wright andM. Felleisen. A syntactic approach to type soundness. Information and computation,
115(1):38–94, 1994.

https://ceylon-lang.org/documentation/1.3/spec/
https://ceylon-lang.org/documentation/1.3/spec/
https://youtu.be/oTFIjm0A2O8
http://www.dcs.gla.ac.uk/~ornela/publications/SFJ.mp4
http://www.dcs.gla.ac.uk/~ornela/publications/SFJ.mp4

	Introduction
	End Goal of Programming
	Static Code Analysis
	How Static Analysis Works

	Varying Type Systems
	Goals of this Project
	Problem Statement
	Aims

	Dissertation Outline

	Background
	Type Systems
	Nominal vs Structural Subtyping
	Featherweight Java
	Tools
	Related Work

	Syntax and Subtyping Implementation
	Syntax
	Syntax of Types
	Syntax of Terms

	Implementation of subtyping algorithm
	Finite Types
	Defining the Subtyping Relation
	Typing Values and Closing the Circularity

	Analysis of the Subtyping Relation
	Complexity and Efficiency of the Subtyping Algorithm
	Flaws of Structural Subtyping

	Exploiting Semantic Subtyping
	Implementation of Boolean Types
	Illustrative example of Boolean Types
	Type-Checking Boolean Types
	How Boolean Types are Represented in SFJ

	Unusable Boolean Types
	Method Types
	Multi-methods
	Additional Features

	Code Generation
	Implementation
	Problems with Code Generation

	Evaluation
	Testing
	User Evaluation
	Evaluation Strategy

	Summary

	Demonstration Paper
	COORDINATION 2020

	Conclusion
	Summary
	Future Work

	Appendices
	SFJ ANTLR Grammar
	Bibliography

